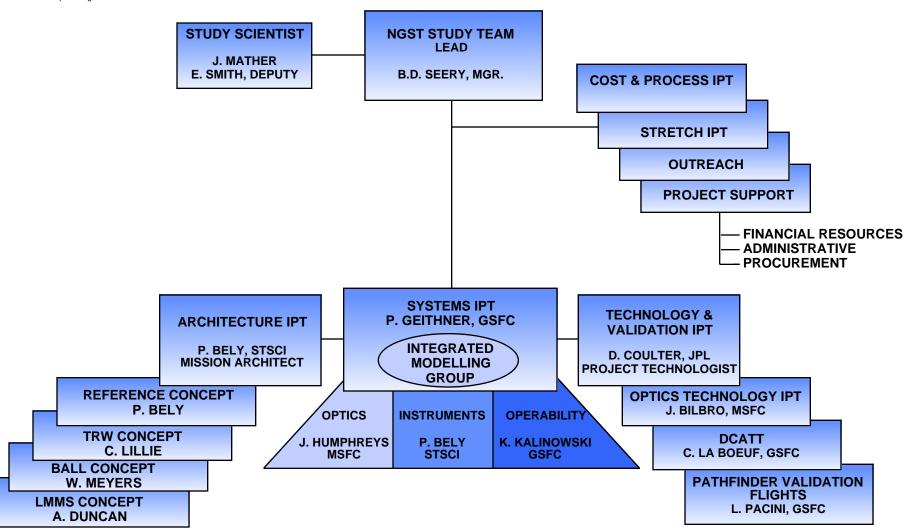
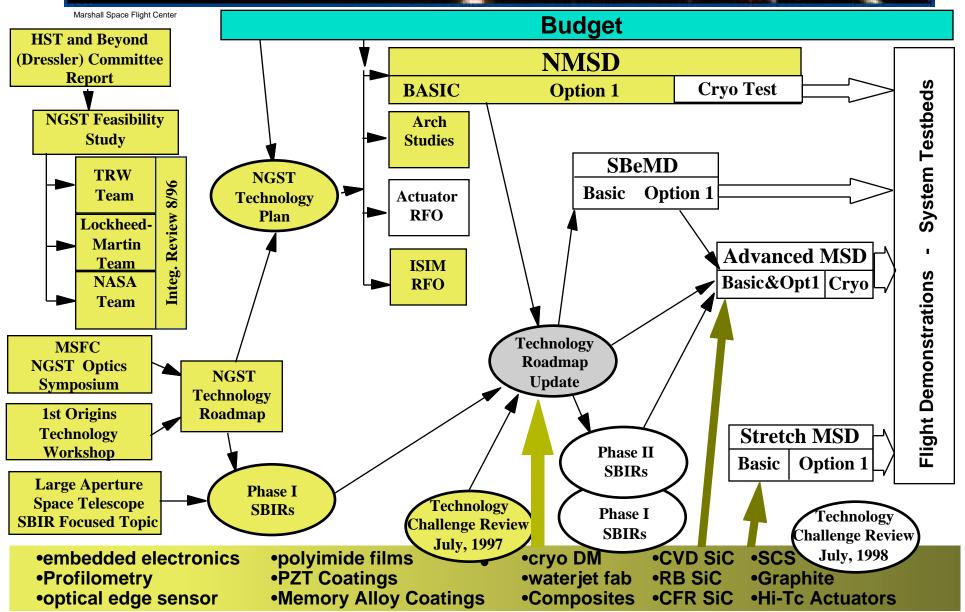


THE NEXT GENERATION SPACE TELESCOPE


"Visiting a Time When Galaxies Were Young" -from HST and Beyond, AURA

Technology Roadmaps

James Bilbro
Sandy Montgomery
September 15, 1997



NGST Technology Roadmap The Road to the Roadmap

NGST

NGST Technology Prioritization MSFC IPT Responsibility

NGST

Marshall Space Flight Center

Optical Telescope Assembly

- Ultralightweight Mirrors
- Cryogenic Actuators
- Cryogenic Deformable Mirror
- Deployable Structures
- Wavefront Sensing & Optical Control

MSFC Optics IPT

Science Instrument Module

- Low Noise NIR Detectors
- High Q.E. TIR detectors
- Large Format Arrays
- Digital mirror
- Vibrationless Cryo-Coolers

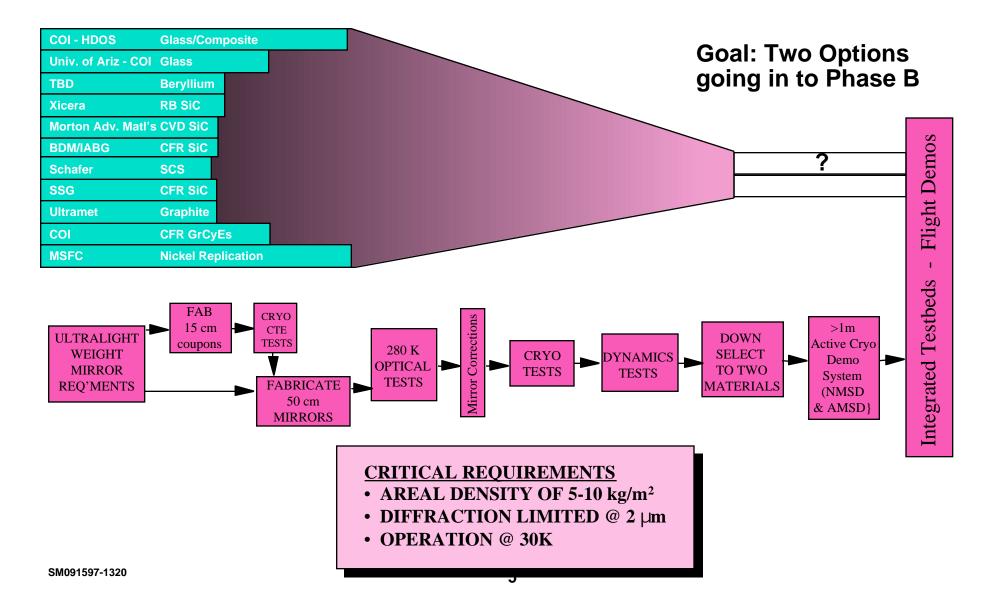
Spacecraft Support Module

- Inflatable or Deployable Sunshade
- Vibration Isolation
- Advanced Startracker
- Low Temperature Materials Property Characterization

Mission Operations

- Flight Software Methodologies
- Autonomous On-board Schedule Execution
- Data Compression
- Control Executive
- Autonomous Fault Management
- User Interaction Tools

"TALL TENT POLES" IN BOLD


Systems

- Integrated Modeling
- Mission Simulator

Ultralightweight Mirror Technology Development Roadmap

NGST

Ultralightweight Mirror Systems Relative State of the Art

NGST

Marshall Space Flight Center

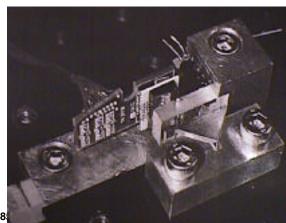
			<15 cm	50 cm	>1 m
1	Univ. of Arizona - COI	Glass			NMSD
I	COI - HDOS	Glass/Comp.			NMSD
1	BerylliumTBD	Beryllium		SBeMD	
l	Xicera	RB SiC	SBIR-I	SBIR-II	
l	Morton Adv. Matl's	CVD SiC	SS FFP	SS FO	Adv.
ĺ	BDM/IABG	CFR SiC	SS FFP	SS FO	Mirror
I	Schafer	SCS	SS FFP	SS FO	Sys. Demo
l	SSG	CFR SiC	SBIR-I	SBIR-II	
1	Ultramet	Graphite	SBIR-I	SBIR-II	
I	COI	CFR GrCyEs	SBIR-I	SBIR-II	i
ı	MSFC	ED Ni	CC		

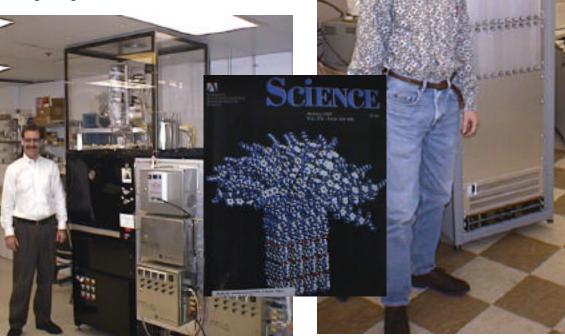
SM091597-1320

East Coast Optics Technology Survey 9/22-26/97

NGST

Marshall Space Flight Center


- Visited with a number of **Phase I SBIR** houses to review their technologies
 - Digital Optics, Charlotte SC. optical edge sensors
 - Arrowhead, Newport News, VA polyimide electronics substrates
 - Xinetics, Devon, MA cryo deformable mirror (actuators and electronics)
 - Foster Miller, Waltham, MA supramolecular structures for PZT thin films
 - Bauer Associates, Wellesley, MA Large Asphere Mirror Profilometry
 - Advanced Tech Materials, Danbury, CT PLZT films for high density DRAM


Also visited Hughes Danbury Optical Systems

- Reviewed past history in Beryllium including SIRTF
- discussed alternate methods of fabricating large area mirrors

Visited with LaRC

- Reviewed in-house research on THUNDER piezoelectric actuators.
- Reviewed SBIR work and in-house research in embedded electronics

East Coast Optics Technology Survey 9/22-26/97

NGST

- NGST Optics leads visited the centers of excellence in Silicon Carbide Mirrors on this side of the Atlantic (all in the Boston area):
 - Morton Advance Materials CVD
 - Xicera Reaction Bonded
 - SSG Carbon Fiber Reinforced
- Topics discussed included
 - Status of technology
 - Current research to resolve technology issues
 - Mirror size limits due to fabrication processes/facilities
 - Why no bid on NMSD competition (most common answer:>50cm fab not ready)

NASA 1996 SBIR PHASE I LASTS - Ultralightweight Mirrors

NGST

Marshall Space Flight Center

Mirror Faceplate

XINETICS INC - Littleton, MA - PI:MARK A. EALEY, COTR:Max Nein/MSFC

LARGE, LOW-TEMPERATURE SILICON CARBIDE MIRRORS

- Trade studies complete on optimum mirror stiffness
- Understanding of effects of various % free silicon
- 15 cm mirror produced /10, surface < 20Å
- Phase II Proposal Submitted

SSG INC - WALTHAM, MA - PI: DEXTER WANG, COTR:Ritva Keski-Kuha/GSFC

ULTRA-LIGHTWEIGHT CONTINUOUS FIBER REINFORCED CERAMIC(CFRC) SILICON CARBIDE MIRROR SUBSTRATES FOR NGST

- FEM models show CFRC should meet NGST specs on at least meter scales.
- Fabricated four mirrors:15-22cm dia., flat & spherical, 3.7-9.6 kg/m2, various lightweighting schemes
- various matrix materials, reaction conditions evaluated
- finishing techniques studied
- Phase II Proposal Submitted

ULTRAMET - PACOIMA, CA - PI:Brian WIlliams, COTR:MSFC

ULTRALIGHTWEIGHT, THERMOMECHANICALLY STABLE PYROLYTIC GRAPHITE COMPOSITE MIRRORS

- based on past success with SiC on SiC foam
- Graphite deposited on SiC OK, but on SiC foam too much distortion.
- finishing techniques show residual stress high
- problem in cooling from high deposition temp time, temp, pressure. Needs further research.
- No Phase II Proposal Submitted will resubmit Phase I this round.

NASA 1996 SBIR PHASE I LASTS - Ultralightweight Mirrors

NGST

Marshall Space Flight Center

Fabrication

COMPOSITE OPTICS INC - SAN DIEGO, CA .PI:Randy ClarkCOTR:Eri Cohen/JPL LIGHTWEIGHT CARBON FILTER COMPOSITE MIRROR FABRICATION USING ADVANCED CORE TECHNOLOGY

- •5 kg/m2, core geometry to minimize weight
- •co-curing glass microsheet bonded onto composite
- •trade studies on rib sizes, material selection,
- •designed & built half meter without glass 6" Plano geometries with glass
- Phase II Proposal submitted

COMPOSITE OPTICS INC - SAN DIEGO, CA - PI:Greg Mehle - COTR:Arif Husain /JPL HIGH PRECISION FABRICATION METHODS NAS8-97203

- •Replicate metal on glass slumped over ceramic blocking bodies
- •less expensive, reusable, precision, low CTE surface
- •12" diameter demo of 1/2 inch pocket miled flat pyrex into curvature.
- •Master made for 28"diameter, 3 radius of curvature tool.
- Phase II Proposal submitted

WATERJET TECH INC- KENT, WA - PI:DIANA J. SUZUKI - COTR:?/MSFC LIGHTWEIGHTING AND SHAPING OF NGST OPTICS WITH ABRASIVE-WATERJETS

- pocket milling of 13 triangular and square patterns in 0.125-0.25 "thick pyrex
- innovative technique to prevent undercutting, webs 1/8 inch wall thickness
- anchor nodes for composite structure .060" deep holes in corners
- nozzle improvements volumetric removal rates up by factor of two
- simple cost analysis for removing material \$38/lb removed material
- Phase II Proposal submitted

NASA 1996 SBIR PHASE I LASTS - Ultralightweight Mirrors

NGST

Marshall Space Flight Center

COMPOSITE OPTICS INC - SAN DIEGO, CA - PI? - COTR:Hall/MSFC

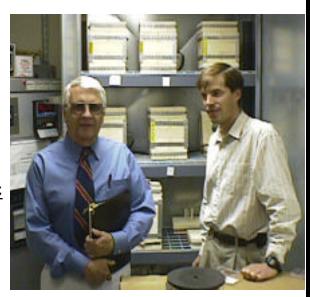
EVALUATION OF BARRIER COATINGS THAT MINIMIZE HYGROSCOPIC CHANGE OF ULTRA-HIGH MODULUS CARBON REINFORCED CYANATE ESTER RESINS

- •two of precoatings failed, but others worked
- •overcoats to fill pin-holes and for corrosion resistance
- •near zero moisture uptake tested out to forty days
- •Phase II submitted

Actuators

<u>BLUE LINE ENGINEERING CO - COLORADO SPRINGS, CO - PI:GREG AMES, COTR:John Rakoczy/MSFC SUPERCONDUCTING NON-CONTACT ACTUATORS</u>

- Modelling and Analysis tools developed
- Analytically verified significant force can be generated across gaps of several millimeters
- Levitation Experimental Apparatus Developed
- Test Segment with actuators and electronics constructed
- Phase II Proposal submitted late


ENERGEN INC - BEDFORD, MA - PI:CHAD H. JOSHI - Rakoczy/MSFC LIGHTWEIGHT, LOW POWER ACTUATORS FOR SPACE-BORNE ADAPTIVE OPTICS SYSTEMS

- Developed new Material Recipe
- Designed and constructed an Actuator
- Performed Cryo Tests
- Results as Expected Phase II Proposal Submitted

XINETICS INC. - LITTLETON, MA - PI:MARK A. EALEY - Redmon/MSFC MSFC LOW TEMPERATURE DEFORMABLE MIRROR TECHNOLOGY

- performed trader studies
- Developed new Material Recipe
- Designed and constructed an Actuator
- Performed Cryo Tests
- Phase II Submitted

Marshall Space Flight Center

Metrology

BAUER ASSOC. INC. - WELLESLEY, MA - PI:PAUL GLENN, COTR:Timo Saha/GSFC MULTI-POINT IN -SITU PROFILING OF LARGE ASPHERICS

- Concept developed.
- Mechanisms Designed.
- Reconstruction Algorithm Derived & tolerances estimated.
- Phase II Proposal Submitted

Cost Analysis

OPTICAL RESEARCH ASSOC. INC - FRAMINGHAM, MA - PI:MARK A. KAHAN, COTR:?/GSFC OPTICAL ENGINEERING AND COST MODELING SOFTWARE

Milestones - Mirror Materials

NGST

Glass ss/Composite Bearing Blocking Body Beryllium Nickel	UoAriz. COI MSFC/Speedring TBD		Δ R CD Δ	R verv	3		1 Ambient Test Δ Ambient	2	3 Cryo Test Δ Cryo	4	1	2	3	4	1
ss/Composite Bearing Blocking Body Beryllium	COI MSFC/Speedring TBD	PDI Δ Start Δ	R CD	R verv			Test <u>\Darrow</u> Ambient		Test						
Bearing Blocking Body	MSFC/Speedring TBD	Start Δ	Δ	verv		•			Cryo						
Beryllium	TBD	Δ	Deliv	ery			Test Δ		Test						
		s		Δ	Figure Test	/			_						
Nickel		-	tart P ∆	DR CI	PR				Ambie Test Δ						
	MSFC	50 cm Mirro		Te Ambier				1 m l	– Aml ∕Iirror∆	Test pient Cι Δ Δ	уо				
ngle Crystal	Schafer	Braze Experim ∆	nents	Foa Exp	m eriments Δ		cm irrors Δ	,	Ambient Test Δ						L
CVD	Morton AM	15 cr Mirro				,	Ambient Test		Cryo Test Δ						
action Bonded	Xinetics	Phas Award A Phas	d(?)				_		_		Phase Award(Δ				
Carbon Fiber	SSG	Award									Phase Award(Δ				
Reinforced	BDM/IABG	Conce	ept rs	(3) 50α Δ ^{Mirro}	rs			Te	st						
R Figure/Polish	TBD		_	Start			Deliver	Ambiei y∆ ∆	t Cryo Δ						
Si Clad RB SiC	TBD '	Clad/Poli Δ	hmbien	est t/ITT/Cr/	o										
shita Cyanata Estar	COI	Award	d(?)												
Jilile Cyallate Ester	Ultramet														
	nite Cyanate Ester	olyzed Graphite Ultramet	nite Cyanate Ester COI Phas Awar	Phase II Award(?) Phase II Award(?) Phase II Award(?) Phase II Award(?)	Phase II Award(?) Phase II Award(?) Phase II Award(?) Award(?)	Phase II Award(?) Phase II Award(?) Phase II Award(?) Award(?) Award(?)	Phase II Award(?) Plase II Award(?) Plase II Award(?) Award(?)	Divide Cyanate Ester COI Phase II Award(?) Phase II Award(?) Award(?) Award(?) Award(?)	Phase II Award(?) PHase II Award(?) PHase II Award(?) PHase II Award(?)	Phase II Award(?) Plase II Award(?) Plase II Award(?) Award(?)	Phase II Award(?) Pifase II Award(?) Award(?) Award(?) Award(?) Award(?)	Phase II Award(?) Plase II Award(?) Plase II Award(?) Plase II Award(?) Phase II Award(?) Award(?) Award(?) Award(?) Award(?) Award(?)	Phase II Award(?) Phase II Award(?) Phase II Award(?) Award(?) Award(?) Award(?) Award(?) Award(?) Award(?) Award(?)	Phase II Award(?) Phase II Award(?) Phase II Award(?) Award(?) Award(?) Award(?) Award(?) Award(?)	Phase II Award(?) Phase II Award(?) Phase II Award(?) Phase II Award(?) A Phase II Award(?) Award(?) Award(?) Award(?) Award(?)

Milestones - Mirror

NGST

M	larshall Space Flight Center		Y97		F۱	/98			FY	′ 99			FY	′00		FY01
			4	1	2	3	4	1	2	3	4	1	2	3	4	1
Environments	Cryo Coupon Tests	COI	Start	Facil Read		ryo Te	sts									
	NMSD Cryo TestBed	MSFC	Estim	ates Δ	Cham <u>A</u>	ber Mo	ds 50 ∆Te			NMSD Tests ∆						AMSD Tests
	Barrier Coatings for Composites	COI	Phas Award									Phase Award(∆				
	Micrometeoroid	MSFC				-	rel. Ilysis 1	Impact Studie								
	Coating Stress	MSFC	Coat Sele	Coling faba	upon &coat _{Ar} Δ—Δ Δ	Test mbient Cr	yo									
Actuators	Cryo Actuator RFO	LaRC		FΟ Δ	Pha	se I iplete A	Phas	se I I plete								
	Cryo Magnetostrictive	Energen	Phas Awar								С	Phase omplete Δ				
	Cryogenic DM	Xinetics	Phas Award									Phase II				
logy	In-Situ Asphere Profilometry	Bauer	Phas Awar								С	Phase I omplete Δ				
ner Metrology	FEM Shell Theory	UoTenn	_ A	ward Δ	Co	mplete Δ										
	Ni Met Mount Components	MSFC	Procure Δ	Set-ι ΔΔ	ıp Δ											
	DCATT Mirrors	ORNL/ UoAriz A	k ward	olanks ∆ ∆	furn	polish Δ—Δ	deliver Δ									
Other	Steering Mirror	LHD		Award Δ		I	eliver Δ									
	Optical System Design	UAH		Award Δ	C	omplet Δ	е									

Electroformed Nickel Mirrors for NGST Task Description

NGST

- Fabricate 0.75 mm thick, half meter diameter Replicated Nickel Mirror
- Prototypical mounting arrangement
 - •GrEp backplane structure,
 - •Electroformed Nickel flexures,
 - actuators
- Test
 - •Replication Quality
 - •Hysteresis
 - Vibro-acoustic
 - Cryogenic Figure

Electroformed Nickel Mirrors for NGST Status

NGST

- •Tooling, Power Supplies, Rotator Assembly, Cold Box Operational.
- •GrEp Backplane Structure Delivered
- •One mirror fabricated- figure not good.
- •Metrology Techniques for 1g Testing"
- •Active Met-Mount" in development
- •Planning/Infrastructure Design for production of Larger Optics
- •Electro-joining Techniques
- Process Refinement
- Alloy Cobalt and/or Iron with Nickel
- •Organic Additives for greater MYS.

Electroformed Nickel Mirrors for NGST Milestone Schedule

NGST

Next mirror to be produced by	10/9/97
•Active Mount by	11/97
•Two more mirrors this year	12/97
•Nickel Alloy (Cobalt) Plating trial &	3/98
organic additive trial by	3/98
•Cryogenic Test Article by	4/98
•Coating	7/98
•Ambient Test	11/98
•Cryogenic Test	5/99

Subscale Beryllium Mirror Demonstrator (SBMD)

Marshall Space Flight Center

- •FIRM FIXED PRICE
- •\$750 K for FY 1998
- •\$750 K for FY 1999
- POCs:
- james.bilbro@msfc.nasa.gov (205) 544-3467
- larry.hill@msfc.nasa.gov (205) 544-5046

TABLE 5. MILESTONE SCHEDULE

3/15/98	Contract Award
4/16/98	Requirements Review (RR)
5/29/98	Preliminary Design Review (PDR)
7/2/98	Critical Design Review (CDR)
2/16/99	SBMD Demonstration at offeror facility
3/6/99	Documentation delivered
4/10/99	Final Review
5/1/99	Hardware delivered to MSFC
	(or)
3/1/99	First Option exercised
4/10/99	Cryogenic Test Review
5/10/99	Cryogenic Test
7/10/99	Cryogenic Deformation Correction
8/10/99	Cryogenic Test II
9/26/99	Cryogenic Test Results Review
9/30/99	Hardware delivered to MSFC (under OPTION ONE)

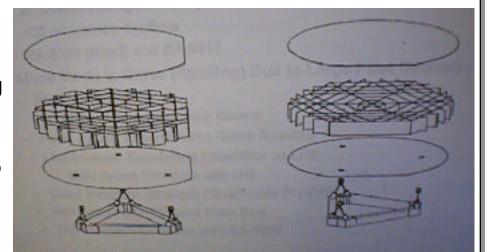
Subscale Beryllium Mirror Demonstrator (SBMD)

<u>Item</u>	<u>Requirement</u>	Goal	<u>Units</u>
Footprint:	Circular w/one flat side (L=D/2)		
Diameter:		0.5	m
Shape:	Concave Spherical		
**Radius of Curvature:	$20 \pm 0.001/D^2$		m
**Figure:	lambda/4		waves(P-V (@ 633 nm)
**Mid-Spatial Scale Errors (1-10 cm): Surface Finish (micro-roughness):	lambda/10 30	 20	<pre>waves(P-V @ 633 nm) Angstroms(RMS)</pre>
(micro-roughness).	30	20	Angstroms (RMS)
*Areal Density	12	7	${ m Kg/m^2}$

^{*}Includes mirror only. Does not include actuators/flexures, and backplane.

^{**} These requirements can be met by using actuators which must be provided. Additional residual error correction can be performed by a down stream Deformable Mirror (DM). This correction can be shown by analysis and consequently the actual DM need not be included.

D= Mirror Diameter (chosen by the offeror keeping in mind scalability Issues)


NGST Mirror System Demonstrator (NMSD)

Marshall Space Flight Center

Composite Optics, Inc.

- •PDR Oct. 23, 1997 at MSFC
- Material evaluations continuing
 - •CTE measurements,
 - •effects of moisture barrier.
 - •edge bond shear tests,
 - adhesives

- Completing first cut of NGST wavefront error allocations
- Developing manufacturing and test plans
- Core Design Concepts for Mirror Subassembly Options being evaluated
- •HDOS to do primary figuring Kodak possibly to ion figure

NGST Mirror System Demonstrator (NMSD)

Marshall Space Flight Center

University of Arizona

- •PDR Oct 24, 1997 at MSFC
- Continuing efforts to design and optimize glass interface
- performing materials evaluations predominately CTE measurements
- Developing composite structure designs with COI